
Low-Power 4-2 and 5-2 Compressors

Karuna Prasad Keshab K. Parhi

Morphics Technology Inc.
Campbell,California, USA

Department of Electrical and Computer Engineering
University of Minnesota, Minneapolis, USA

kprasad @ morphics .com parhi@ece.umn.edu

Abstract and simplifies the interconnections because they can sum up

This paper explores various low power higher order com-
pressors such as 4-2 and 5-2 compressor units. These com-
pressors are building blocks for binary multipliers. Various
circuit architectures for 4-2 compressors are compared with
respect to their delay and power consumption. The differ-
ent circuits are simulated using HSPICE. A new circuit for
5-2 compressor is then presented which is 12% faster and
consumes 37% less power:

I: Introduction

Multiplication is the basic arithmetic operation which
is important in several microprocessors and digital signal
processing applications. Microprocessors use multipliers
within their arithmetic logic units, and digital signal pro-
cessing systems require multipliers to implement DSP al-
gorithms such as convolution and filtering. In most sys-
tems, the multiplier lies directly within the critical path due
to which, the demand for high-speed multipliers is contin-
uously increasing. However, due to portability and relia-
bility issues, the power consumption of the multipliers has
become equally important. All this has resulted in the devel-
opment of novel circuit design techniques, with the aim of
reducing the power dissipation of multipliers without com-
promising their speed performance.

A multiplication process essentially consists of generat-
ing the partial products’ matrix, reducing the matrix to two
rows followed by the final carry propagation addition. Mod-
ified Booth recoding and various other multi-bit recoding
algorithms have proved to be useful in reducing the num-
ber of partial products generated. In the next step, speeding
up the adding operation is highly critical for reducing the
partial products’ matrix. This step usually contributes the
most to the delay, power and area of the multiplier. For this
purpose, use of higher order compressors instead of the con-
ventional 3:2 compressors have been explored. This reduces

This work was supported in part by the National Science Foundation
under grant number CCR-9988262.

0-7803-7147-W01/$10.0002001 IEEE

the partial products in the form of a binary tree. In the final
step, a fast carry propagate adder generates the multiplier’s
final output by adding the two rows of partial products.

As far as the circuit implementations are concerned, pass-
transistor logic is emerging as an attractive replacement of
the conventional satic CMOS logic, especially in the design
of arithmetic units such as adders and multipliers. Fewer
transistors are required by the pass-transistor logic to imple-
ment basic logic functions, which translates into lower input
gate capacitance and lower power dissipation as compared
with conventional static CMOS [1][2]. In this paper, we ex-
plore low power circuits, based on pass-transistor logic, for
4:2 and 5:2 compressors.

2: Partial Product Accumulation

Compressors are the fundamental building blocks used
for accumulating the partial products during the multipli-
cation process. Therefore, improving the power efficiency
of these architectures can lead to significant savings of the
power consumed by the entire multiplier. The compressors
are combined to form a Wallace tree or a Dadda tree struc-
ture. A Wallace tree is an implementation of an adder tree
designed for minimum propagation delay. Rather than com-
pletely adding the partial products in pairs like the ripple
adder tree does, the Wallace tree uses carry save form to
sum up all the bits of the same weights in a merged tree, in
order to reduce the number of partial products bits to two
rows. The advantage of the tree is that there is speed in-
creases with log of the operand length, while this increase
is linear in the case of iterative arrays. Dadda tree is a gen-
eralized form of Wallace tree adder. The number of adders
needed in the Dadda tree is less than the Wallace tree but
the overall interconnections are more irregular in the Dadda
tree, making it difficult to layout in VLSI design [3].

Previously, full adders or 3:2 compressors were used for
accumulation, in which 3 equally weighted bits were com-
bined to produce two bits: one (the carry) with weight of
n+l and the other (the sum) with weight n. Each layer of

129

mailto:parhi@ece.umn.edu

the tree therefore reduced the number of vectors by a factor
of 3:2. Now, with the development of fast 4:2 compressors,
they are being used for the same purpose. The Wallace trees
have a delay behavior of approximately O(Zog4/2(mn)),
where m is the number of multiplicand bits, n is the num-
ber of encoded multiplier bits and 4/2 is the compression
ratio of the 4:2 compressor used. Wallace Tree suffers from
irregular routing and from its non-unique overall structure,
i.e., there are several ways of building a particular Wallace
tree. For example, a carry generated in one column may
be introduced in the next more significant column at differ-
ent places, e.g. close to the tree root or close to the output.
The tree has as many layers as is necessary to reduce the
number of vectors to two (a carry and a sum). 16 X 16 bit
multiplier would need 2 levels of cascaded 4:2 compressors
and 32 X 32 bit multiplier would need 3 levels of cascaded
4:2 compressors. Hence, on an average the output of each
compressor would either be fed to another compressor or
it'll go as an input to the final carry propagation adder.

SUM CARRY Compressor

3: Compressor Architectures

Figure 1 shows the block diagram of a 3:2 compressor,
also known as a full-adder. It has three input bits of equal
weight and two output bits, sum ahd carry. Sum has the
same weight as the input bits but the carry has one greater
binary bit weight. This compressor has a maximum of two
XORdelays.

1 1
SUM CARRY

CARRY SUM

Figure 1: A 3:2 compressor

Figure 2: A 4:2 compressor

s d

I

SUM CARRY

(a)

I i

1 3 XOWMUX

CARRY
DC1.y 1

S U M

Figure 3: An alternative implementation of 4:2 compressor

2 XORs

a b c d e i i i i ' i

Figure 2 shows the block diagram of a 4:2 compressor.
It has five inputs including a carry-in from the neighbour-
ing cell of one binary bit lower significance. It has three
outputs including a cany-out to the one greater significance
cell. A 4:2 compressor can be built using 3:2 compressors.
It consists of two 3:2 compressors in series and involves a
critical path delay of 4 XORs. An alternative implementa-
tion is shown in Figure 3. This implementation is better and
involves a critical path delay of 3 XORs, hence reducing the
critical path delay by 1 XOR [41[51.

Figure 4 shows the block diagram of a 5:2 compressor.

Figure 4: A 5:2 compressor

130

It has 5 direct inputs and 2 additional carry-in bits, from
a neighbouring one-lower significant cell. It has four out-
puts, among which two of them are carry-out bits to the
one greater significant cell, cany bit is of one greater sig-
nificance and last is the sum bit. A 5:2 compressor can be
built using three 3:2 compressors, in which case it involves
a critical path delay of 6 XORs.

X2-OUl

x l j n

x2jn

3 XOWMUX
& 1 o r a d gate

SUM CARRY Delay

Figure 5: 5:2 compressor - Implementation 1

An implementation of 5:2 compressor was proposed in
[6]. Figure 5 shows the block diagram of this 5:2 compres-
sor implementation. At the first glance, it can be assumed
that this implementation would have a critical path delay of
4 XORs. But a detailed analysis reveals that the critical path
delay consists of 3 XORs + 1 andor gate delay.

i 1
SUM CARRY

Jx
SUM CARRK

Figure 6: 5:2 compressor - Implementation 2

Figure 6 shows a block diagram of the second imple-
mentation of the 5:2 compressor. This implementation is
derived in a similar fashion as that shown in Figure 3. It,
basically, consists of a 4:2 compressor followed by a 3:2

compressor and has a critical path delay of 5 XORs. As it
will be shown in the next section, although this circuit has
5 XORs delay it is faster and more power efficient as com-
pared to the implementation shown in Figure 5 . The detailed
equations are written below.

+(a CD b @ c @ d e e @ zlin) . e

zlovt = (a @ b) . c + (a @ b) . a (3)
(a @ b @ c @ d) . zlin + (a 8 b e c 8 d) .d(4) z2ovt =

4: Simulation Results and Analysis

All the simulations for computing delay and power con-
sumption are done using HSPICE, 0.35pm technology
and at 3.3V. The outputs of all the simulated circuits were
loaded appropriately using dummy NMOS gates. Diffusion
load was assumed to be 20% of the gate load. The transis-
tors were sized for equal rise and fall delay and an overall
minimum delay. Matlab was used to generate 1024 random
inputs, with an equal probability of 0.5 for 0 and 1, for the
power simulation. Average power consumption was com-
puted after feeding these 1024 random inputs. Delay was
computed as the time interval between the time at which
the input signal was at 50% of its full value, i.e., 1.65V
and the time at which the output signal was also at 1.65V.
Worst case rise delay or fall delay for any of the outputs
are recorded as the delay of the respective circuit. The xlin
and/or x2in are not fed seperately to the compressor. The
xlout and/or x2out generated by the circuit are fed as xlin
and/or x2in. This should not make any difference as far
as delay or power consumption of the compressor is con-
cerned, since the input and output signals are seeing the
same load as they actually would. Although, the arithmetic
value of result would not be correct.

As might be evident from the previous section, all the
compressors have XORs and MUXs on their critical path.
Hence, these two basic blocks need to be implemented ef-
ficiently. Figure 7 shows the two different implementations
of an XOR gate. Implementation (U) has been proved to
have the best performance for a CMOS XOR [7]. An XOR
can also be implemented as a mux as in implementation (b) .
Figure 8 shows two different efficient implementations of
the MUX [1][4][5] using pass-transistor logic. There is one
more efficient implementation based on the non-full swing
nature of pass-transistor logic[4]. But, this Mux would suf-
fer from severe signal degradation if two 4:2 compressors
are cascaded in series. Hence, all our simulations involve
use of full swing MUXs.

In order to obtain the optimum 4:2 compressor circuit,
Figure 3 was simulated using the three different XOR/MUX

131

implementations shown in the Figures 7(a), 8(a) and (b).
The loading at the output of the compressor is another com-
pressor. Hence, the sum and cany outputs of the compressor
are appropriately loaded. The time delays and power con-
sumption parameters for the four different implementations
of the 4:2 compressor are tabulated in Table 1. The first im-
plementation has XOR implemented as in Figure 7(a) and
MUX as in Figure 8(a). The second implementation has the
same XOR with the MUX as in Figure 8(b). The third im-
plementation implements XOR and MUX both as in Figure
8(a) and the fourth one implements both the XOR and MUX
as in Figure 8(b). All the circuits were simulated at a clock
rate of 1.211s. Transistor sizing, in each case, was done to
achieve the minimum optimum delay.

The results in Table 1 indicate that implementation 4 is
the best implementation. It not only has the least time de-
lay but it also has the least power consumption. This also

OUT
D O 4 :?$;) k D 1

- Dl DI d-L!kom implemented

D1 DO

(a)
-

MUX - O W

OUT=m*W+ D i - B

Imdem. 1 I .736

(b)

Figure 7: Two implementations of the XOR

8.362

OUT = select + DS selen

Implem. 2
Implem. 3

OUT

-
OUT

I
.600 4.875
.392 4.901

(a) (b)

Figure 8: Two implementations of the MUX

reveals that the XOR/Mux Implemented ai in Figure 8 (b)
is optimum for the compressor circuits. Hence, for further
simulation of 5:2 compressors, XORs and MUXs are imple-
mented as in Figure 8(b).

In the case of 5:2 compressors, Implementation 1 shown
in Figure 5 and Implementation 2 shown in Figure 6 (b) are
simulated. The compressor is loaded with another compres-
sor and hence, the two outputs are loaded accordingly. The
time delays and power consumption parameters for the two
different implementations of the 5:2 compressor are tabu-
lated in Table 2. All the circuits were simulated at a clock
rate of 1.2ns. In case of implementation 1, i.e. Figure 5, the
two functions (U . b) + (c d) and (U + b) . (c + d) were im-
plemented as (a + 6) . (E + z) and (C .6) + (E . z), respec-
tively. By implementing these functions as negative logic
functions we avoid the two inverters needed at the output
of the otherwise positive logic functions and hence, we re-
duce the critical path delay. Minimum sized transistors were
found to be optimum for implementing these two functions.

The results in Table 2 indicate that the second imple-
mentation outperforms the first. In terms of time delay it
achieves 11.67% speed improvement and in case of power
consmuption it achieves 37.02% of improvement.

Table 1: A Comparison between the different implementa-
tions of the 4:2 compressor

I TimeDelay I PowerConsumption I

132

Table 2: A Comparison between the two implementations
of the 5:2 compressor

Implem. 1
Implem. 2

Time Delay Power Consumption
(10-~secs) (1 0 - ~ ~ a t t ~)

.540 7.360

.477 4.635

5: Conclusion

This paper has described various circuit implementa-
tions of 4-2 and 5-2 compressors, followed by the simu-
lation results of these circuits. A new faster circuit for a
5-2 compressor is presented and is proved to achieve bet-
ter performance for both delay and power consumption. It
achieves 11.67% improvement in speed and 37.02% im-
provement in power consumption, hence obtaining an over-
all improvement of 44.37% in the power-delay product.

References

K. Yano, T. Yamanaka, T. Nishida, M. Saito, K. Shimohigashi,
and A. Shimizu, “A 3.8ns cmos 16x16-b multiplier using com-
plementary pass-transistor logic”, IEEE Journal of Solid-State
Circuits, vol. 25, pp. 388-395, April 1990.

Neil H.E. Weste and K.Eshraghian, Principles of CMOS VLSI
Design: A systems Perspective, Addison-Wesley Publishing
Company, 1993.

Keshab K. Parhi, VLSI Digital Signal Processing Systems, .

John Wiley and Sons, Inc., 1999.

C.F.Law, S.S.Rofai1, and K.S.Yeo, “Low power circuit im-
plementation for partial-product addition using pass-transistor
logic”, IEE Proc-Circuits Devices Syst., vol. 146, pp. 124-
129, June 1999.

J.M. Wang, S.C. Fang, and W.S. Feng, “A 4.4-11s crnos 54x54-
b multiplier using pass-transistor multiplexer”, IEEE 1994
Custom Integrated Circuits Conference, pp. 599-602, 1994.

O.Kwang, K. Nowaka, and E.E. Swartzlander, “A 16-bit x
16-bit mac design using fast 5:2 compressors”, pp. 235-243,
2000.

J.M.Wang, S.C.Fang, and W.S.Feng, “New efficient designs
for xor and xnor functions on the transistor level”, IEEE Jour-
nal of Solid-state Circuits, vol. 29, pp. 780-786, July 1994.

133

